NUMERICAL METHODS AND COMPLEX VARIABLES QUESTION BANK

UNIT-I:NUMERICAL METHODS

1.By the fixed point iteration process, find the root correct to 3-decial places, of the equation x=cosx, near x= $\pi/4$.

2.By the single point iteration method, find the root of the equation $x^{3}-2x-5=0$ which lies near x=2.

3.Find the positive root of x^4 -x-10=0 by iteration.

4. Find the value of y for x=0.4 by Picard's method, given that $\frac{dy}{dx} = x^2 + y^2$, y(0)=0.

5.Solve $\frac{dy}{dx} = 2x - y$,y(1)=3 by Picard's method.

6.Evaluate the values of y(1.1) and y(1.2) from $y'' + y^2y' = x^3$, y(1)=1, y'(1)=1 by taylor series method.

7.Use Runge-Kutta method to find y(0.1) for the equation y'' + xy' + y = 0,y(0)=1,y'(0)=0.

8.Find the first and second derivatives of the function tabulated below at the point x=1.5

х	1.5	2.0	2.5	3.0	3.5	4.0
У	3.375	7.0	13.625	24.0	38.875	59.0

UNIT-II: LAPLACE TRANSFORMS

1. Find
$$L\left\{\frac{\sin 3t \cos t}{t}\right\}$$
, Using Laplace transform,

2.Evaluate $\int_0^\infty t^2 e^{-4t} \sin 2t \, dt$ Using Laplace transform

3. Using the convolution theorem find $L^{-1}\left\{\frac{s}{\left(s^2+a^2\right)^2}\right\}$

4. Using Laplace transform, solve $\frac{d^2 y}{dt^2} + 2\frac{dy}{dt} + 5y = e^{-t} \sin t$, given that y(0)=0, y¹(0)=1.

5. Solve the following differential equation using the Laplace transform $\frac{d^2y}{dx^2} + 2 \frac{dy}{dx} + 2y = 5 \text{ sint given that } y(0) = 0, y'(0) = 0$

6.Define an inverse Laplace transform of a function

7. If
$$L\{f(t)\} = \frac{9s^2 - 12s + 15}{(s-1)^3}$$
, find $L\{f(3t)\}$ using change of scale property
8.. Using the convolution theorem find $L^{-1}\left\{\frac{s}{(s^2 + a^2)^2}\right\}$

9. Using Laplace transform, solve $\frac{d^2 y}{dt^2} + 2\frac{dy}{dt} + 5y = e^{-t} \sin t$, given that y(0)=0, $y^1(0)=1$.

UNIT-III: ANALYTICAL FUNCTIONS

1.Show That the function is defined by $f(z) = \frac{x^3(1+i)-y^3(1-i)}{x^2+y^2}$ at $z \neq 0$, and f(0) = 0 is continuous and satisfies C-R equations at the origin but f'(0) does not exist.

- 2. Find the analytic function whose real part is $e^{2x}(xCos2y ySin2y)$.
- 3. Find analytical function whose real part is $r^2 Cos2\theta + rSin2\theta$.

4.If f (z) is an analytic function of z, prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4|f^1(z)|^2$.

5. State and Prove Cauchy's Integral Formula.

6.Evaluate $\int_C \frac{z^2 - z + 1}{z - 1} dz$, where $c: |z| = \frac{1}{2}$. 7.Evaluate $\int_C \frac{\log z}{(z - 1)^3} dz$, where $c: |z - 1| = \frac{1}{2}$ using Cauchy's Integral Formula. 8.Evaluate $\int_C \frac{z + 4}{z^2 + 2z + 5} dz$, where c: |z + 1 - i| = 2.

UNIT-IV: SINGULARITIES AND RESIDUES

1.Define (i) Removable singularity, (ii) Essential singularity, (iii) Pole Singularity.

2.Find the Laurent's Series of $f(z) = \frac{z^2 - 6z - 1}{(z - 1)(z - 3)(z + 2)}$ in the region 3 < |z + 2| < 5. 3.Evaluate by Residue Theorem $\int_C \frac{z - 1}{(z + 1)^2(z - 2)} dz$, where c: |z - i| = 2.

- 4. Evaluate $\int_0^{2\pi} \frac{d\theta}{5-3\cos\theta}$ by Contour Integration.
- 5. Find the Laurent's Series of $\frac{1}{z^2-4z+3}$ for 1 < |z| < 3.

6. Find the Taylor's Series of e^z about z = 3.

7.Evaluate $\int_C \frac{z-3}{z^2+2z+5} dz$, where c is the Circle given by (i).|z| = 1, (ii). |z + 1 - i| = 2, (iii). |z + 1 + i| = 28.Expand $\frac{7z-2}{(z+1)z(z-2)}$ about the point z = -1 in the region 1 < |z + 1| < 3 as Laurent's Series.

9.Expand f(z) = Cosz in Taylor's Series about $z = \frac{\pi}{4}$.

10.State and Prove Cauchy's Residue Theorem.

UNIT-V: CONFORMAL MAPPING

1. Find and plot the image of the regions (i) x > 1 (ii) y > 0 (iii) $0 < y < \frac{1}{2}$ [14M]

Under the transformation $w = \frac{1}{z}$.

2. Find the Fixed Points of the Transformation.

(i).
$$w = \frac{2i-6z}{iz-3}$$
 (ii). $w = \frac{6z-9}{z}$ (iii). $w = \frac{z-1}{z+1}$ (iv). $w = \frac{2z-5}{z+4}$.

3. Define Bilinear Transformation and Show That Every Bilinear Transformation

is Conformal.

4. Find the Bilinear Transformation which maps the points (0, 1, i) into the points (1+i,-i,2-i).

5. Write Cross-Ratio of four points z_1, z_2, z_3, z_4 .

6.Show that the function $w = \frac{4}{z}$ transforms the straight line x = c in the z – plane into a circle in the wplane.

7. Define Critical Point and Bilinear Transformation.

8.Show that the function $w = \frac{4}{z}$ Transforms the line x = c in the z- plane into a Circle in the w- plane.

9.Under the Transformation $w = \frac{z-i}{1-iz}$ find the image of the Circle

(i). |w| = 1, (ii). |z| = 1.

10..Find the Bilinear Transformation which maps 1 + i, - i, 2 - i of the z- plane into the points0, 1, i respectively of the w-plane. Find the Fixed and Critical Points of this Transformation.