NUMERICAL METHODS AND COMPLEX VARIABLES
 QUESTION BANK

UNIT-I:NUMERICAL METHODS

1.By the fixed point iteration process, find the root correct to 3-decial places, of the equation $x=\cos x$, near $x=\pi / 4$.
2.By the single point iteration method, find the root of the equation $x^{3}-2 x-5=0$ which lies near $x=2$.
3.Find the positive root of $x^{4}-x-10=0$ by iteration.
4.Find the value of y for $\mathrm{x}=0.4$ by Picard's method, given that $\frac{d y}{d x}=x^{2}+y^{2}$,$y(0)=0$.
5.Solve $\frac{d y}{d x}=2 x-y, y(1)=3$ by Picard's method.
6.Evaluate the values of $y(1.1)$ and $y(1.2)$ from $y^{\prime \prime}+y^{2} y^{\prime}=x^{3}, y(1)=1, y^{\prime}(1)=1$ by taylor series method.
7.Use Runge-Kutta method to find $y(0.1)$ for the equation $y^{\prime \prime}+x y^{\prime}+y=$ $0, y(0)=1, y^{\prime}(0)=0$.
8.Find the first and second derivatives of the function tabulated below at the point $x=1.5$

x	1.5	2.0	2.5	3.0	3.5	4.0
y	3.375	7.0	13.625	24.0	38.875	59.0

UNIT-II: LAPLACE TRANSFORMS
1.Find $L\left\{\frac{\sin 3 t \cos t}{t}\right\}$, Using Laplace transform,
2.Evaluate $\int_{0}^{\infty} t^{2} e^{-4 t} \sin 2 t d t$ Using Laplace transform
3.Using the convolution theorem find $L^{-1}\left\{\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right\}$
4.Using Laplace transform, solve $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+5 y=e^{-t} \sin t$, given that $\mathrm{y}(0)=0, \mathrm{y}^{1}(0)=1$.
5.Solve the following differential equation using the Laplace transform
$\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+2 y=5$ sint given that $y(0)=0, y^{\prime}(0)=0 \quad$.
6.Define an inverse Laplace transform of a function
7. If $L\{f(t)\}=\frac{9 s^{2}-12 s+15}{(s-1)^{3}}$,find $L\{f(3 t)\}$ using change of scale property
8.. Using the convolution theorem find $L^{-1}\left\{\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right\}$
9. Using Laplace transform, solve $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+5 y=e^{-t} \sin t$, given that $\mathrm{y}(0)=0, \mathrm{y}^{1}(0)=1$.

UNIT-III: ANALYTICAL FUNCTIONS

1. Show That the function is defined by $f(z)=\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}}$ at $z \neq 0$, and $f(0)=0$ is continuous and satisfies C-R equations at the origin but $f^{\prime}(0)$ does not exist.
2.Find the analytic function whose real part is $e^{2 x}(x \operatorname{Cos} 2 y-y \operatorname{Sin} 2 y)$.
2. Find analytical function whose real part is $r^{2} \operatorname{Cos} 2 \theta+r \operatorname{Sin} 2 \theta$.
4.If $f(z)$ is an analytic function of z, prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{1}(z)\right|^{2}$.
5.State and Prove Cauchy's Integral Formula.
6.Evaluate $\int_{C} \frac{z^{2}-z+1}{z-1} d z$, wherec: $|z|=\frac{1}{2}$.
7.Evaluate $\int_{C} \frac{\log z}{(z-1)^{3}} d z$, wherec: $|z-1|=\frac{1}{2}$ using Cauchy's Integral Formula.
8.Evaluate $\int_{C} \frac{z+4}{z^{2}+2 z+5} d z$, wherec: $|z+1-i|=2$.

UNIT-IV: SINGULARITIES AND RESIDUES

1.Define (i) Removable singularity, (ii) Essential singularity, (iii) Pole Singularity.
2.Find the Laurent's Series of $f(z)=\frac{z^{2}-6 z-1}{(z-1)(z-3)(z+2)}$ in the region $3<|z+2|<5$.
3.Evaluate by Residue Theorem $\int_{C} \frac{z-1}{(z+1)^{2}(z-2)} d z$, wherec: $|z-i|=2$.
4.Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{5-3 \cos \theta}$ by Contour Integration.
5. Find the Laurent's Series of $\frac{1}{z^{2}-4 z+3}$ for $1<|z|<3$.
6. Find the Taylor's Series of e^{z} about $\mathrm{z}=3$.
7.Evaluate $\int_{C} \frac{z-3}{z^{2}+2 z+5} d z$, where c is the Circle given by

$$
\text { (i). }|z|=1 \text {, (ii). }|z+1-i|=2 \text {, (iii). }|z+1+i|=2
$$

8.Expand $\frac{7 z-2}{(z+1) z(z-2)}$ about the point $\mathrm{z}=-1$ in the region $1<|z+1|<3$ as Laurent's Series.
9. Expand $\mathrm{f}(\mathrm{z})=$ Cosz in Taylor's Series about $z=\frac{\pi}{4}$.
10.State and Prove Cauchy's Residue Theorem.

UNIT-V: CONFORMAL MAPPING

1.Find and plot the image of the regions (i) $x>1$ (ii) $y>0$ (iii) $0<y<\frac{1}{2}$

Under the transformation $w=\frac{1}{z}$.
2.Find the Fixed Points of the Transformation.
(i). $w=\frac{2 i-6 z}{i z-3}$ (ii). $w=\frac{6 z-9}{z}$ (iii). $w=\frac{z-1}{z+1}$ (iv). $w=\frac{2 z-5}{z+4}$.
3.Define Bilinear Transformation and Show That Every Bilinear Transformation

is Conformal.

4.Find the Bilinear Transformation which maps the points (0,1 , i) into the points ($1+\mathrm{i},-\mathrm{i}, 2-\mathrm{i}$).
5.Write Cross-Ratio of four points $z_{1}, z_{2}, z_{3}, z_{4}$.
6. Show that the function $\mathrm{w}=\frac{4}{\mathrm{z}}$ transforms the straight line $\mathrm{x}=\mathrm{c}$ in the $\mathrm{z}-$ plane into a circle in the $\mathrm{w}-$ plane.
7.Define Critical Point and Bilinear Transformation.
8. Show that the function $w=\frac{4}{z}$ Transforms the line $\mathrm{x}=\mathrm{c}$ in the z - plane into a Circle in the w- plane.
9.Under the Transformation $w=\frac{z-i}{1-i z}$ find the image of the Circle
(i). $|w|=1$, (ii). $|z|=1$.
10..Find the Bilinear Transformation which maps $1+\mathrm{i},-\mathrm{i}, 2$ - i of the z - plane into the points0, 1 , i respectively of the w-plane. Find the Fixed and Critical Points of this Transformation.

